fiducia Documentation
Release 0.2.0

Pawel M. Kozlowski, Daniel H. Barnak, Myles T. Brophy

Mar 19, 2021

10

11

12

13

14

15

16

Installing Fiducia

Examples

How to Contribute

Acknowledging and Citing

Fiducia License (BSD 3-clause)

Cubic Spline Matrices (fiducia.cspline)

Spline Uncertainty Propagation (fiducia.error)
Data Loading Utilities (fiducia.loader)

Fiducia Main File (fiducia.main)

Miscellaneous Functions (fiducia.misc)

Plot Defaults (fiducia.pltDefaults)

Raw Dante Data Processing (fiducia.rawProcess)
Dante Response Functions (fiducia.response)
Uncertainty Propagation for Common Operations (fiducia.stats)
Visualization Utilities (fiducia.visualization)

Indices and tables

Python Module Index

Index

FIRST STEPS

11
13
21
27
31
39
41
43
57
59
65
67
69

71

fiducia Documentation, Release 0.2.0

Fiducia is an open source package for unfolding spectral information from filtered diode array diagnostics (such as
Dante) using the cubic splines analysis method . This method simply assumes that the underlying spectrum is smoothly
varying, and does not impose any other constraints on the shapes of spectrum. See below for instructions on how to
install Fiducia, and for examples on how to run an analysis using Fiducia.

FIRST STEPS 1

https://doi.org/10.1063/5.0002856

fiducia Documentation, Release 0.2.0

2 FIRST STEPS

CHAPTER
ONE

INSTALLING FIDUCIA

1.1 Requirements

Fiducia require Python version 3.7 or newer. Fiducia also require the following openly available packages for instal-
lation:

* NumPy — 1.15.0 or newer
e SciPy — 1.1.0 or newer

e pandas — 0.23.0 or newer

* matplotlib — 3.0.0 or newer
e xarray — 0.15.1 or newer

e Astropy — 3.1 or newer

1.2 Installation with pip

Official releases of Fiducia are published to pypi.org and can simply be pip installed like so:

’ pip install fiducia

1.3 Building and installing from source (for contributors)

1.3.1 Make sure you have python installed, preferably via Anaconda

Here is where you get Anaconda, and make sure to get the Python 3 version. https://www.anaconda.com/distribution/

https://www.numpy.org/
https://www.scipy.org/
https://pandas.pydata.org/
https://matplotlib.org/
http://xarray.pydata.org
https://www.astropy.org/
https://pypi.org/project/fiducia/
https://pypi.org/
https://www.anaconda.com/distribution/

fiducia Documentation, Release 0.2.0

1.3.2 Setup installation directory

Make a directory called “fiducia” in a sensible place on your system. Preferably in a directory where none of the
higher level directory names have spaces in them.

1.3.3 Setup a virtual environment

If you have python installed via Anaconda, then create your virtual environment like this

conda create —-name fiducia

1.3.4 Clone the repository using git

In the fiducia directory you created, run the following on the command line

git clone https://github.com/lanl/fiducia.git

1.3.5 Activate your virtual environment

Still on the command line, run

source activate fiducia

1.3.6 Install requirements

’pip install -r requirements.txt

1.3.7 Install fiducia

If you are a user then do

’pip install .

If you wish to help in developing fiducia, then do

’pip install -e .

1.3.8 Test if install was successful

Open a python and try doing import fiducia. If all went well then you shouldn’t get any error messages.

4 Chapter 1. Installing Fiducia

CHAPTER
TWO

2.1 General examples

General-purpose and introductory examples from Fiducia

2.1.1 Test Example for Sphinx Docs

We create a test plot to see if sphinx gallery works

EXAMPLES

import numpy as np
import fiducia
import matplotlib.pyplot as plt

Generating some data

dataX = np.arange (10)
dataY = dataX xx 2

Plotting the data

plt

.plot (dataX, datay)
plt.
plt.
plt.
plt.

xlabel ('X")

ylabel ('Y")

title ('Example data')
show ()

fiducia Documentation, Release 0.2.0

Example data

80 4

70

60

50 4

30 4

20 +

10 ~

Total running time of the script: (0 minutes 0.156 seconds)

6 Chapter 2. Examples

CHAPTER
THREE

HOW TO CONTRIBUTE

Visit our GitHub repository and look through the list of open issues to see how you can contribute. If you find a bug,
or would like to see a feature enhancement, then open up an issue and describe it detail.

https://github.com/lanl/fiducia
https://github.com/lanl/fiducia/issues

fiducia Documentation, Release 0.2.0

8 Chapter 3. How to Contribute

CHAPTER
FOUR

ACKNOWLEDGING AND CITING

If you use Fiducia for work/research presented in a publication (whether directly, or as a dependency to another
package), we encourage the following acknowledgement:

This research made use of Fiducia, a community-developed Python package for analysis of filtered diode
array signals.

and that you cite the following paper(s):

@article{barnak2020soft,

title={Soft x-ray spectrum unfold of K-edge filtered x-ray diode arrays using cubic,
—splines},

author={Barnak, DH and Davies, JR and Knauer, JP and Kozlowski, Pawel Marek},

journal={Review of Scientific Instruments},

volume={91},

number={7},

pages={073102},

year={2020},

publisher={AIP Publishing LLC}

url={https://doi.org/10.1063/5.0002856}

fiducia Documentation, Release 0.2.0

10 Chapter 4. Acknowledging and Citing

CHAPTER
FIVE

FIDUCIA LICENSE (BSD 3-CLAUSE)

© 2020. Triad National Security, LLC. All rights reserved. This program was produced under U.S. Government
contract 89233218CNA000001 for Los Alamos National Laboratory (LANL), which is operated by Triad National
Security, LLC for the U.S. Department of Energy/National Nuclear Security Administration. All rights in the program
are reserved by Triad National Security, LLC, and the U.S. Department of Energy/National Nuclear Security Admin-
istration. The Government is granted for itself and others acting on its behalf a nonexclusive, paid-up, irrevocable
worldwide license in this material to reproduce, prepare derivative works, distribute copies to the public, perform
publicly and display publicly, and to permit others to do so.

This program is open source under the BSD-3 License. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2.Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3.Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

11

fiducia Documentation, Release 0.2.0

12 Chapter 5. Fiducia License (BSD 3-clause)

CHAPTER
SIX

CUBIC SPLINE MATRICES (FIDUCIA.CSPLINE)

Created on Fri Mar 8 09:41:36 2019

Functions for working with cubic spline equation in matrix form.

@author: Pawel M. Kozlowski

6.1 Functions

splineCoords(energy, energyStart, energyEnd)

Convert photon energy value into normalized coordi-
nates for a particular spline region.

splineCoordsInv(energyNorm, energyStart, ...)

Given a normalized energy value and the bounds of a
spline segment, return the un-normalized photon energy
value.

yCoef fArr(energyNorm, chLen)

Returns the matrix M_y(t) for a given value of t in:

dCoef fArr(energyNorm, chLen)

Returns the matrix M_D(t) for a given value of t in:

dToyArr(chLen)

Construct matrix for converting from D; to y; vector.

responseInterp(energyNorm, energyMin, ...)

Given a DANTE detector response as a function of en-
ergy, convert the response to normalized photon energy,
t, over a given spline segment, and return interpolated
response values for a given value of t.

yChiCoeffArr(energyNorm, chLen, dToY)

This is the matrix corresponding to:

yChiCoeffArrEnergies(energyNorms, chLen,

dToY)

This is the matrix corresponding to:

fancyTrapzZ2(energyNorms, yChis, segments, .. .)

Trap rule integration of the folding between our M,
matrix and response function matrix, with respect to
normalized photon energy, for each channel.

segment sArr(knots)

Returns the bounds of each spline segment, given the
spline knot points.

detectorArr(channels, knots, responseFrame)

Matrix representing the spectrally integrated folding of
the detector response with a cubic spline interpolation
of the x-ray spectrum.

knotSolve(signals, detArr, ... [, ...])

Get knot points y; from measured DANTE signals Sy.

reconstructSpectrum(chLen, knots, knotsY[,

)

Reconstruct the inferred DANTE spectrum given the
knot points y; obtained from knotSolve().

13

fiducia Documentation, Release 0.2.0

6.1.1 splineCoords
fiducia.cspline.splineCoords (energy, energyStart, energyEnd)
Convert photon energy value into normalized coordinates for a particular spline region.

Parameters

* energy (float, numpy.ndarray) — Energy value to be converted into normalized
spline coordinate.

* energyStart (f1oat)— Lower bound energy for the spline region based on knot points.
* energyEnd (f1oat)— Upper bound energy for the spline region based on knot points.

* normCoord (float) — Return value of energy converted into normalized spline coordi-
nates.

Returns normCoord — Normalized energy coordinate(s).

Return type float, numpy.ndarray

Notes

Examples

6.1.2 splineCoordsinv

fiducia.cspline.splineCoordsInv (energyNorm, energyStart, energyEnd)
Given a normalized energy value and the bounds of a spline segment, return the un-normalized photon energy
value. This is the inverse of splineCoords().

Parameters
* energyNorm (float, numpy.ndarray)— Normalized photon energy
* energyStart (float)—Lower bound energy for the spline region based on knot points.
* energyEnd (f1oat)— Upper bound energy for the spline region based on knot points.
Returns energy — Absolute photon energy (un-normalized).

Return type float, numpy.ndarray

Notes

Examples

6.1.3 yCoeffArr

fiducia.cspline.yCoeffArr (energyNorm, chLen)
Returns the matrix M_y(t) for a given value of t in:

Yi(t) = My(t)y; + Mp(t)D;
Parameters

* energyNorm (f1oat)— normalized photon energy for a spline section.

* chLen (int)— Number of DANTE channels (equal to number of spline knots).

14 Chapter 6. Cubic Spline Matrices (fiducia.cspline)

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

fiducia Documentation, Release 0.2.0

Returns mArr — Sparse matrix M, (t).

Return type scipy.sparse.lil.lil_matrix

Notes

Examples

6.1.4 dCoeffArr

fiducia.cspline.dCoeffArr (energyNorm, chLen)
Returns the matrix M_D(t) for a given value of t in:

Yi(t) = My(t)y: + Mp(t)D;

Parameters

* energyNorm (f1oat)— normalized photon energy for a spline section.

* chLen (int)— Number of DANTE channels (equal to number of spline knots).
Returns dArr — Sparse matrix Mp(t).

Return type scipy.sparse.lil.lil_matrix

Notes

Examples

6.1.5 dToyArr

fiducia.cspline.dToyArr (chlLen)
Construct matrix for converting from D; to y; vector.

Parameters chLen (int)— Number of DANTE channels (equal to number of spline knots).
Returns diToyi — Matrix for converting from D; to y; vector.

Return type numpy.ndarray
Notes

The matrix is given by:

D; = 3x7 X3y

Examples

6.1.6 responseinterp

fiducia.cspline.responselnterp (energyNorm, energyMin, energyMax, responseFrame, channels)
Given a DANTE detector response as a function of energy, convert the response to normalized photon energy, t,
over a given spline segment, and return interpolated response values for a given value of t. Returns an array of
interpolated responses corresponding to the number of channels.

6.1. Functions 15

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

fiducia Documentation, Release 0.2.0

Parameters
* energyNorm (float, numpy.ndarray)—normalized photon energy

* energyMin (f1oat) - Lower bound photon energy of the spline segment over which we
are normalizing.

* eneryMax (float) — Upper bound photon energy of the spline segment over which we
are normalizing.

* responseFrame (pandas.core. frame.DataFrame)—DANTE channel responses
as a function of photon energy (not normalized).

* channels (numpy.ndarray)—numpy array of DANTE channel numbers.
Returns responsesInterpd — Returns a matrix of (energyNorms, channels) of response functions.

Return type numpy.ndarray

Notes

Examples

6.1.7 yChiCoeffArr

fiducia.cspline.yChiCoeffArr (energyNorm, chLen, dToY)
This is the matrix corresponding to:

My(t) + 3Mp(t)x7 "x3

which describes the cubic spline interpolation of the x-ray spectrum.
Parameters
* energyNorm (f1oat)—normalized photon energy
* chLen (int)— Number of DANTE channels (equal to number of spline knots).

* dToY (numpy.ndarray) — Matrix for converting from D, to y; values in cubic spline
interpolation. See dToyArr().

Returns yChiArr — Returns a 2D matrix for a particular value of energyNorm.

Return type numpy.ndarray

Notes
The matrix is given by:

M, (t) +3Mp(t)x7 X3

16 Chapter 6. Cubic Spline Matrices (fiducia.cspline)

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

fiducia Documentation, Release 0.2.0

Examples

6.1.8 yChiCoeffArrEnergies

fiducia.cspline.yChiCoeffArrEnergies (energyNorms, chLen, d1oY)
This is the matrix corresponding to:

M, (t) +3Mp(t)x7 X3

which describes the cubic spline interpolation of the x-ray spectrum.
energyNorms: numpy.ndarray Vector of normalized photon energies.

chLen: int Number of DANTE channels (equal to number of spline knots).

dToY: numpy.ndarray Matrix for converting from D; to y; values in cubic spline interpolation. See dToyArr().

Returns yChiArrEnergies — Returns a 3D matrix composed of a series of 2D yChiCoeff matri-
ces corresponding to the given energyNorm values. This matrix is indexed as (energyNorms,
knotIndex, knotIndex).

Return type numpy.ndarray

Notes
The matrix is given by:

M, (t) + 3Mp(t)x7 ' x3

Examples

6.1.9 fancyTrapz2

fiducia.cspline. fancyTrapz2 (energyNorms, yChis, segments, responseFrame, channels)

Trap rule integration of the folding between our M, matrix and response function matrix, with respect to nor-
malized photon energy, for each channel. The result should be a matrix with shape (len(channels), len(segments),

len(knotlndex)).
Parameters
* energyNorms (numpy.ndarray) — 1D array of normalized photon energies

* yChis (numpy.ndarray) — 3D array of M,, values corresponding to (energyNorms,
segments, knotIndex).

* responses (numpy.ndarray) — 2D array of DANTE channel response functions cor-
responding to (energyNorms, channels).

* channels (numpy.ndarray)— Array of DANTE channel numbers.

Returns integArr — A matrix containing the folded integration of the M,, matrix and re-
sponse function matrix, with respect to normalized photon energy. Has shape (len(channels),
len(segments), len(knotlndex)).

Return type xarray.DataArray

6.1. Functions

17

fiducia Documentation, Release 0.2.0

Notes

Examples

6.1.10 segmentsArr
fiducia.cspline.segmentsArr (knots)
Returns the bounds of each spline segment, given the spline knot points.

Returns an array of tuples of (energyMin, energyMax) describing the bounds of each spline segment, given an
array of spline knots (photon energies corresponding to K-edges).

Parameters knots (numpy.ndarray)—numpy array of photon energies describing positions of
spline knots.

Returns segments — A 1D array of tuples of (energyMin, energyMax), corresponding to the bounds
of each spline segment. Has length of ‘len(knots) - 1°.

Return type numpy.ndarray

Notes

Examples

6.1.11 detectorArr

fiducia.cspline.detectorArr (channels, knots, responseFrame, boundary="y0', npts=1000)
Matrix representing the spectrally integrated folding of the detector response with a cubic spline interpolation
of the x-ray spectrum. This is applied to the measured DANTE channel signals to recover knot points y; of the
cubic spline, which can then be used to reconstruct the inferred x-ray spectrum.

Parameters
* channels (numpy.ndarray) — Array of DANTE channel numbers.

* knots (numpy.ndarray) — Array of photon energies describing positions of spline
knots.

* responseFrame (pandas.core. frame.DataFrame)—DANTE channel responses
as a function of photon energy (not normalized).

* boundary (str, optional)- Choose whether yGuess corresponds to yg (lowest pho-
ton energy) or y,,+1 (highest photon energy) boundary condition. This should correspond to
the photon energy value given in knots. Options are ‘y0’ or ‘yn+1°. Default ‘y0’.

* npts (int)— Number of points used in computing the integral

Returns detArr — Matrix representing the spectrally integrated folding of the detector response with
a cubic spline interpolation of the x-ray spectrum. 2D array of channels and knot points of shape
(n, n).

Return type numpy.ndarray

18 Chapter 6. Cubic Spline Matrices (fiducia.cspline)

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

fiducia Documentation, Release 0.2.0

Notes

For each spline segment we have:

Mipuss =/0 (My(t) + 3Mp(t)x; 'x3)Ra(t)dt

Each spline is then summed to form the full detector matrix for recovering the knot points.

Examples

6.1.12 knotSolve

fiducia.cspline.knotSolve (signals, detArr, detArrBoundaryCol, detArrVarianceBoundaryCol,

detArrlnv, stdDetArrInv, signalsUncertainty=None, yGuess=1I1e-77,
npts=1000)

Get knot points y; from measured DANTE signals Sy.

Parameters

Returns

signals (numpy.ndarray)— numpy array of DANTE measured signal for each chan-
nel at a particular point in time.

detArr (numpy.ndarray) — Matrix representing the spectrally integrated folding of
the detector response with a cubic spline interpolation of the x-ray spectrum. 2D array of
channels and knot points of shape (n, n).

detArrBoundaryCol (xarray.DataArray) — Column of cublic spline matrix cor-
responding to the knots at the boundary chosen with boundary.

detArrVarianceBoundaryCol (xarray.DataArray) — Column of variances in
the cublic spline matrix corresponding to the knots at the boundary chosen with boundary.

detArrInv (xarray.DataArray)— Inversion of detArr, with the column correspond-
ing to boundary removed so detArr is invertible.

stdDetArrInv (xarray.DataArray) — Array of the standard deviation of each ele-
ment in detArrInv based on variance using the ‘responseUncertaintyFrame’ propagated with
Monte Carlo.

signalsUncertainty (xarray.DataArray, optional)— numpy array of the
uncertainty of the DANTE measured signal for each channel at a particular point in time.
The default is None.

yGuess (float, optional)— Guess for position of boundary knot point. Default is
le-77.

npts (int, optional)— Number of points used in computing the integral. Default is
1000.

knotsY (numpy.ndarray) — Array of knot point intensity values with yGuess appended.

knotsY Variance (numpy.ndarray) — Array with each element corresponding to the variance
of the same element in ‘knotsY”.

6.1. Functions

19

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

fiducia Documentation, Release 0.2.0

Notes

Examples

6.1.13 reconstructSpectrum

fiducia.cspline.reconstructSpectrum (chlen, knots, knotsY, knotsYUncertainty=None,
npts=1000, plot=False)
Reconstruct the inferred DANTE spectrum given the knot points y; obtained from knotSolve().

Parameters
* chLen (int)— Number of DANTE channels (equal to number of spline knots).

* knots (1ist, numpy.ndarray) — List or array of knot point photon energy value.
See knotFind().

* knotsY (numpy.ndarray) — Array of knot point intensity values with yGuess ap-
pended. See knotSolve() and analyzeSpectrum().

* knotsYUncertainty (numpy.ndarray) — Array of knot point intensity uncertainty
values with yGuess appended. See knotSolve() and analyzeSpectrum(). The default is None.

* npts (int)— Number of points used in computing the integral. The default is 1000.
* plot (Bool) — Flag for plotting unfolded spectrum. The default is False.
Returns
* photonEnergies (numpy.ndarray) — Photon energy axis of unfolded spectrum.
* intensities (numpy.ndarray) — Spectral intensity axis of unfolded spectrum.

* intensitiesVariance (numpy.ndarray) — Uncertaitny (1 o) on spectral intensity values.

Notes

Examples

20 Chapter 6. Cubic Spline Matrices (fiducia.cspline)

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

CHAPTER
SEVEN

SPLINE UNCERTAINTY PROPAGATION (FIDUCIA.ERROR)

Created on Tues June 16 13:48:21 2020
Utilities for calculating response uncertainty

@author: Myles Brophy

7.1 Functions

detectorErrMc(detArr, detArrVariance[, ...])

Monte Carlo simulation and statistics to determine cubic
spline uncertainty.

knotVarianceFind(channels],...])

Modification of response.knotFind()

responselInterpVariance(energyNorm, ...)

Given a DANTE detector response as a function of en-
ergy, convert the response to normalized photon energy,
t, over a given spline segment, and return interpolated
response values for a given value of t.

fancyTrapz2Variance(energyNorms, yChis, ...)

Calculate the variance when propogating uncertainties
through fiducia.cspline.fancyTrapz2 ().

detectorArrVariance(channels, knots, ...[,...])

Propagates uncertanity through cspline.
detectorArr () to find the wvariance
in :math: M_{int} ().

detectorUncertainty(channels, responseFile)

Finds the cspline detector matrix, it's inverse matrix and
std matrix using Monte Carlo uncertainty propagation.

7.1.1 detectorErrMC

fiducia.error.detectorErrMC (detArr, detArrVariance, samples=10000, boundary='y0', MChis-

togram=False)

Monte Carlo simulation and statistics to determine cubic spline uncertainty.

Calculate the cubic spline matrix uncertainty using a Monte Carlo simulation and statistics on the MC’s output.

Parameters

* detArr (numpy.ndarray) — Matrix representing the spectrally integrated folding
of the detector response with a cubic spline interpolation of the x-ray spectrum. See

‘cspline.detectorArr()’.

* detArrVariance (numpy.ndarray) — A DataFrame containing the uncertainty for
each Dante channel for the photon energy range that detArr spans.

* samples (int,

optional)— Number of MCs amples to run. Default is 10000.

21

https://docs.python.org/3/library/functions.html#int

fiducia Documentation, Release 0.2.0

* boundary (str, optional)-—Choose whether yGuess corresponds to yg (lowest pho-
ton energy) or y,,+1 (highest photon energy) boundary condition. This should correspond to
the photon energy value given in knots. Options are y0 or yn+1. Default is ‘y0’.

* MChistogram (bool, optional)— Plot histograms corresponding to each variant of
detArr generated with Monte Carlo uncertainty propagation. Default is False.

Returns stdErrorMatrix — A numpy.ndarray with the standard deviation of the inverted matrices
generated using random weights based on the channel uncertainty.

Return type numpy.ndarray
Raises
* Exception — If boundary doesn’t equal y0 or yn+1.

* ValueError — If the shapes of detArr and detUncertaintyArr aren’t equal.

Notes

Examples

7.1.2 knotVarianceFind

fiducia.error.knotVarianceFind (channels, responseUncertaintyFrame=None, force-
Knot=array([], dtype=float64), knotBoundaryY=1e-77,
boundary="y0’)

Modification of response.knotFind()
Parameters
* channels (numpy.ndarray)— Array of DANTE channel numbers.

* responseUncertaintyFrame (pandas.core. frame.DataFrame,
optional)— DataFrame holding percent uncertainties of DANTE channel responses as a
function of photon energy (not normalized). The default is None.

e forceKnot (TYPE, optional)— DESCRIPTION. The default is np.array([]).

* knotBoundaryY (float, optional)— Guess for position of y_0 or y_{n+1} knot
point. Default is 1e-77.

* boundary (str, optional)- Choose whether yGuess corresponds to yg (lowest pho-
ton energy) or y,,+1 (highest photon energy) boundary condition. This should correspond to
the photon energy value given in knots. Options are y0 or yn+1. Default y0.

Returns knotUncertainty — An array of uncertainty in knot points, with each element correspond-
ing to a channel or boundary condition. See response.knotFind ().

Return type numpy.ndarray

22 Chapter 7. Spline Uncertainty Propagation (fiducia.error)

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

fiducia Documentation, Release 0.2.0

Notes

Examples

7.1.3 responselnterpVariance

fiducia.error.responseInterpVariance (energyNorm, energyMin, energyMax, responseUncer-

taintyFrame, channels)
Given a DANTE detector response as a function of energy, convert the response to normalized photon energy, t,

over a given spline segment, and return interpolated response values for a given value of t. Returns an array of
interpolated responses corresponding to the number of channels.

Parameters
* energyNorm (float, numpy.ndarray) - normalized photon energy

* energyMin (f1oat) - Lower bound photon energy of the spline segment over which we
are normalizing.

* eneryMax (float) — Upper bound photon energy of the spline segment over which we
are normalizing.

* responseFrame (pandas.core. frame.DataFrame)—DANTE channel responses
as a function of photon energy (not normalized).

* channels (numpy.ndarray)— numpy array of DANTE channel numbers.

Returns responsesInterpdVariance — Returns a matrix of (energyNorms, channels) of response
functions.

Return type numpy.ndarray

Notes

See also:

cspline.repsonselnterp

Examples

7.1.4 fancyTrapz2Variance

fiducia.error.fancyTrapz2Variance (energyNorms, yChis, segments, responseUncertaintyFrame,

channels, interpProp=True)
Calculate the variance when propogating uncertainties through fiducia.cspline. fancyTrapz2 ().

Parameters

* energyNorms (numpy.ndarray) — Array of normalized energies over which the inte-
gral is computed.

* yChis (numpy.ndarray) — 3D array corresponding to the My, coefficients. Ar-
ray shape corresponds to (energyNorms, chLen, dToY). See fiducia.error.
detectorArrVariance ()

* segments (numpy.ndarray) — Array of segments produced by segmentsArr ()
with the knots

7.1. Functions 23

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

fiducia Documentation, Release 0.2.0

* responseUncertaintyFrame (pandas.core. frame.DataFrame) -
DataFrame holding uncertainty percentages of DANTE channel responses as a func-
tion of photon energy (not normalized).

* channels (numpy.ndarray)— Array of DANTE channel numbers.

e interpProp (bool, optional) - Boolean to decide if error.
responseInterpVariance () should be used. If False,
Afunc: cspline.responselnterp() is used, speeding up the calculation. Note that the
uncertainty is would not be propagated correctly if False. With future optimizations, this
option to choose may be removed. Default is True.

Returns integArrVariance — A matrix containing the folded integration of the M, matrix and
response function uncertainty matrix, with respect to normalized photon energy. Has shape
(len(channels), len(segments), len(knotlndex)).

Return type xarray.Dat

Notes

See also:

cspline.fancyTrapz?2

Examples

7.1.5 detectorArrVariance

fiducia.error.detectorArrVariance (channels, knots, responseUncertaintyFrame, boundary="y0’,
npts=1000)
Propagates uncertanity through cspline.detectorArr () to find the variance in

tmath: M_{int} ().
Parameters
* channels (numpy.ndarray) — Array of DANTE channel numbers.

* knots (numpy.ndarray) — Array of photon energies describing positions of spline
knots.

* responseUncertaintyFrame (pandas.core. frame.DataFrame) -
DataFrame holding uncertainty percentages of DANTE channel responses as a func-
tion of photon energy (not normalized).

* npts (int, optional)-—Number of points used in computing the integral. The default
is 1000.

Returns

* detArrVariance (xarray.DataArray) — 2D array of channels and knot points uncertainties
of shape (n, n+1).

* detArrVarianceBoundaryCol (xarray.DataArray) — Column of variances in the cublic
spline matrix corresponding to the knots at the boundary chosen with boundary.

24 Chapter 7. Spline Uncertainty Propagation (fiducia.error)

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

fiducia Documentation, Release 0.2.0

Notes

Covariances between segments is not currently accounted for. This covariance should be small compared to the
other uncertainties, but should be noted.

See also:

cspline.detectorArr

Examples

7.1.6 detectorUncertainty

fiducia.error.detectorUncertainty (channels, responseFile, responseUncertaintyFile=None,

boundary="y0', npts=1000, samples=1000, MChis-
togram=False, saveDataset=True, csplineDatasetFile="")

Finds the cspline detector matrix, it's inverse matrix and std matrix using Monte Carlo uncertainty propagation.

Propagates response uncertainties through

Parameters

Returns

channels (numpy.ndarray)— Array of DANTE channel numbers.

responseFile (str)— Path to the .csv holding DANTE channel responses as a function
of photon energy (not normalized).

responseUncertaintyFile (str, optional)— Path to the.csv holding DANTE
channel response uncertainties as a function of photon energy. Uncertainty values provided
as percentages.

boundary (str, optional)- Choose whether yGuess corresponds to yg (lowest pho-
ton energy) or y,,+1 (highest photon energy) boundary condition. This should correspond to
the photon energy value given in knots. Options are y0 or yn+1. Default ‘y0’.

npts (int, optional)— Number of points used in computing the integral. Default is
1000.

samples (int, optional)—Number of samples to generate during Monte Carlo prop-
agation. See error.detectorErrMC (). Default is 1000.

detArr (xarray.DataArray) — Matrix representing the spectrally integrated folding of the de-
tector response with a cubic spline interpolation of the x-ray spectrum. 2D array of channels
and knot points of shape (n, n).

detArrBoundaryCol (xarray.DataArray) — Column of cublic spline matrix corresponding
to the knots at the boundary chosen with boundary.

detArrVarianceBoundaryCol (xarray.DataArray) — Column of variances in the cublic
spline matrix corresponding to the knots at the boundary chosen with boundary.

detArrInv (xarray.DataArray) — Inversion of detArr, with the column corresponding to
boundary removed so detArr is invertible.

stdDetArrInv (xarray.DataArray) — Array of the standard deviation of each element in
detArrInv based on variance using the responseUncertaintyFrame propagated with Monte
Carlo.

7.1. Functions

25

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

fiducia Documentation, Release 0.2.0

Notes

Examples

26 Chapter 7. Spline Uncertainty Propagation (fiducia.error)

CHAPTER
EIGHT

DATA LOADING UTILITIES (FIDUCIA.LOADER)

Created on Fri Mar 8 09:20:37 2019

Utilities for loading DANTE measurement and response function data.

@author: Pawel M. Kozlowski

8.1 Functions

cleanupHeader(dataFrame)

Strip whitespace and rename DataFrame headers.

loadResponses(channels, fileName[, solid])

Load DANTE measurement data from files given the
channels and path to the directory containing the re-
sponse function files.

loadResponseUncertainty(responseFrame,
fileName)

Load uncertainty percentages into a DataFrame.

readDanProcessed(channels, directory)

Loads DANTE measurement data from files given the
channels and path to the directory containing the re-
duced and aligned DANTE data.

signalsAt Time(time, measurementFrame, chan-

nels)

Get DANTE signals from each channel at a particular
time.

signal Int(channels, measurementFrame, ...)

Get time-integrated Dante signals for a specified time
interval.

readDanteDat a(filePath)

Reads Dante .dat file and returns header info and chan-
nel signals as two separate pandas dataframes.

8.1.1 cleanupHeader

fiducia.loader.cleanupHeader (dataFrame)
Strip whitespace and rename DataFrame headers.

Parameters dataFrame (pandas.core. frame.DataFrame)— DataFrame to be cleaned.

Returns cleanedDataFrame — DataFrame with stripped and renamed channel headers.

Return type pandas.core.frame.DataFrame

27

fiducia Documentation, Release 0.2.0

Notes

Examples

8.1.2 loadResponses

fiducia.loader.loadResponses (channels, fileName, solid=True)
Load DANTE measurement data from files given the channels and path to the directory containing the response
function files. Returns a dataframe with the data.

Parameters
* channels (1ist, numpy.ndarray)— Listor array of relevant channels

* fileName (st r) — Full path and filename of .csv file containing DANTE respones func-
tions.

* solid (Bool, optional)- Includes solid angle in response function value if true. The
default is true.

Returns responseFrame — DataFrame with the response function data for the ‘channels’ requested

Return type pandas.core.frame.DataFrame

Notes

Examples

8.1.3 loadResponseUncertainty

fiducia.loader.loadResponseUncertainty (responseFrame, fileName)
Load uncertainty percentages into a DataFrame.

Parameters

* responseFrame (pandas.core. frame.DataFrame) — DataFrame to base the re-
spones uncertainty frame on.

* fileName (st r)— Full path and filename of .csv file containing DANTE response uncer-
tainty percentages functions.

Returns responseUncertaintyFrame — DataFrame with each column being a channel and each
element being the channel’s uncertainty percentage. Extended to match the photon energy range
in the response frame.

Return type pandas.core.frame.DataFrame
Notes

Examples

8.1.4 readDanProcessed

fiducia.loader.readDanProcessed (channels, directory)
Loads DANTE measurement data from files given the channels and path to the directory containing the reduced
and aligned DANTE data. Returns a dataframe with the data. Note that this is not for raw data. It is for reading
DANTE signals that have already been processed by Dan Barnak’s scripts.

28 Chapter 8. Data Loading Utilities (fiducia.loader)

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

fiducia Documentation, Release 0.2.0

Parameters
* channels (list, numpy.ndarray)- Listor array of relevant channels
* directory (str)— Path to channel response function files

Returns dataFrame — Dataframe of aligned signals from Dan’s analysis.

Return type pandas.core.frame.DataFrame

Notes

Examples
8.1.5 signalsAtTime

fiducia.loader.signalsAtTime (time, measurementFrame, channels, plot=False, method='"interp")
Get DANTE signals from each channel at a particular time. Default is to return an interpolated value of the
signal at the given time. Alternatively, this function can return the nearest value in the signal data array for the
given time.

Parameters
* time (float) - Time for which we want DANTE signals (in ns).

* measurementFrame (pandas.core.frame.DataFrame) — Pandas dataframe
containing DANTE measurement data. See readDanteData() and readDanProcessed().

* plot (Bool)— When True, plots DANTE signals vs channel index at a particular time.

* method (st r)— Either ‘nearest’ or ‘interp’. ‘nearest’ finds the nearest point in the DANTE
signal to the given time. ‘interp’ returns an interpolated signal value for the given time.
Default is ‘interp’.

Returns signals — Dante signals for each channel at a particular time step.

Return type numpy.ndarray

Notes

Examples

8.1.6 signalint

fiducia.loader.signallnt (channels, measurementFrame, tStart, tEnd)
Get time-integrated Dante signals for a specified time interval. Used in getting time-integrated spectrum from
the unfold.

Parameters

* measurementFrame (pandas.core.frame.DataFrame) — Pandas dataframe
containing DANTE measurement data. See loadDanteData().

* tStart (float) - Lower bound for time integration.
* tEnd (f1oat) - Upper bound for time integration
Returns signallnt — Time integrated Dante signals for each channel.

Return type numpy.ndarray

8.1. Functions 29

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

fiducia Documentation, Release 0.2.0

Notes

Examples

8.1.7 readDanteData
fiducia.loader.readDanteData (filePath)
Reads Dante .dat file and returns header info and channel signals as two separate pandas dataframes.
Parameters filePath (st r)— Full path to the Dante .dat file.
Returns

* headerFrame (pandas.core.frame.DataFrame) — Header of Dante data file. This typically
include information about the various components used in each Dante channel, such as
oscilloscopes, XRDs, etc.

o dataFrame (pandas.core.frame.DataFrame) — Dante data.

Notes

Examples

30 Chapter 8. Data Loading Utilities (fiducia.loader)

https://docs.python.org/3/library/stdtypes.html#str

CHAPTER
NINE

FIDUCIA MAIN FILE (FIDUCIA.MAIN)

Created on Fri Jan 25 12:22:01 2019
FIDUCIA: Filtered Diode Unfolder (using) Cubic Spline Algorithm
DANTE spectrum deconvolver based on cubic splines method [1]. Translated from Dan Barnak’s Mathematica code.

DANTE channels are bounded by edge absorption feature (knot point) due to filter for the respective channel. Cubic
splines representing the estimated spectrum are fitted in each spectral region bounded by knot points. The detector
signal for each channel is then equal to the response function of the detector folded with the matrix representation
of the cubic spline. A triadiagonal matrix representation of the cubic spline equation is used to make the problem
numerically tractable. This way a matrix inversion can be used to solve for the unknown coefficients in the cubic
spline equation, using the measured signals. These coefficients are then plugged back into the cubic spline equation
over each interval (between knot points) to make a piecewise reconstruction of the x-ray spectrum at each time step.

References
Cubic spline deconvolution method [1] J. P. Knauer and N. C. Gindele. Temporal and spectral deconvolution of data
from diamond, photoconductive devices. Rev. Sci. Instrum. 75, 3714 (2004) https://doi.org/10.1063/1.1785274

Error propagation for cubic spline deconvolution method [2] D. L. Fehl and F. Briggs. Verification of unfold error
estimates in the unfold operator code. Rev. Sci. Instrum. 68, 890 (1997) https://doi.org/10.1063/1.1147713

Useful description of cubic spline matrix representation [3] http://mathworld.wolfram.com/CubicSpline.html

Paper comparing cubic splines unfolds to other methods [4] D. H. Barnak, J. R. Davies, J. P. Knauer, and P. M.
Kozlowski. Soft x-ray spectrum unfold of K-edge filtered x-ray diode arrays using cubic splines. Submitted to Review
of Scientific Instruments in 2020.

@author: Pawel M. Kozlowski

9.1 Functions

simulateSignal() Takes the inferred spectrum and folds it with the instru-
ment function to retrieve the forward propagated signal
for each DANTE channel.

inferRadTemp(power, area, anglel, ...]) Gets the inferred radiation temperature by calculating
in from radiated power through the Stefan-Boltzmann
Law.

inferPower(energies, spectral, ...]) Gets the inferred total radiation power as a function of
time.

continues on next page

31

https://doi.org/10.1063/1.1785274
https://doi.org/10.1063/1.1147713
http://mathworld.wolfram.com/CubicSpline.html

fiducia Documentation, Release 0.2.0

Table 1 — continued from previous page
analyzeSpect rum(channels, knots, detArr, .. .) Given the response function file and the DANTE mea-
surement data file, run cubic spline analysis to recon-
struct spectrum for a given time.
analyzeStreak(channels, responseFrame, ...) Given the response function file and the DANTE mea-
surement data file, run cubic spline analysis to recon-
struct spectrum for a given time.
feelingLucky/(dataFile, attenuatorsFile, .. .) Attempt processing dante signals given dante data file
and calibration files using sensible defaults.

9.1.1 simulateSignal

fiducia.main.simulateSignal ()
Takes the inferred spectrum and folds it with the instrument function to retrieve the forward propagated signal
for each DANTE channel.

Notes

Examples

9.1.2 inferRadTemp

fiducia.main.inferRadTemp (power, area, angle, powerUncertainty=None)
Gets the inferred radiation temperature by calculating in from radiated power through the Stefan-Boltzmann
Law.

Parameters

* power (float, np.ndarray) - Total radiated power as a function of time calculated
from unfolded spectra. See main.inferPower ().

* area (float)— Area of emitting surface in units of mm”2. For hohlraums/halfraums, this
is the area of the LEH.

* angle (float) — Angle between the surface area normal and the Dante line of sight in
degrees. Usually 37.4 degrees for hohlraums/halfraums. Must be between 0 and 90 degrees.

* powerUncertainty (float, np.ndarray, optional) — Uncertainty in total
radiated power as a function of time calculated from unfolded spectra. See main.
inferPower (). The default is None.

Returns
* tRad (numpy.ndarray) — Radiation temperature of the blackbody emitter.

« tRadVariance (numpy.ndarray) — Variance o2 on the radiation temperature.

32 Chapter 9. Fiducia Main File (fiducia.main)

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

fiducia Documentation, Release 0.2.0

Notes

Total x-ray flux (power) from a black body emitter is given by:
P =ogpAcos(d)T?

Where P = power, osp = Stefan-Boltzmann constant, A is the area of radiating surface, 6 is the viewing angle
between the surface area normal and the Dante line-of-sight, T is the radiation temperature of the black body
emitter.

Notes

Examples

9.1.3 inferPower
fiducia.main.inferPower (energies, spectra, spectraUncertainty=None)
Gets the inferred total radiation power as a function of time.
Parameters
* energies (numpy.ndarray) — Photon energies corresponding to input spectrum

* spectra (numpy.ndarray) — Spectral Flux values as a function of photon energy in
units of (GW/sr/eV)

Returns
* power (numpy.ndarray) — Total x-ray power (flux) as a function of time.

 powerVariance (numpy.ndarray) — Variance o2 on total x-ray power.

Notes

Examples

9.1.4 analyzeSpectrum

fiducia.main.analyzeSpectrum (channels, knots, detArr, detArrBoundaryCol, detArrVariance-
BoundaryCol, detArrlnv, stdDetArrInv, measurementFrame, time,
signalsUncertainty=None, yGuess=0, boundary='y0', nPtsinte-
gral=100, nPtsSpectrum=100, plotSignal=False, plotKnots=False,

plotSpectrum=True)
Given the response function file and the DANTE measurement data file, run cubic spline analysis to reconstruct

spectrum for a given time.
Parameters

* channels (list, numpy.ndarray)- Listor array of relevant DANTE channel num-
bers.

* responseFrame (pandas.core. frame.DataFrame)— Pandas dataFrame contain-
ing response functions for each DANTE channel. See loadResponses().

* knots (list, numpy.ndarray) — List or array of knot point photon energy value.
See knotFind().

9.1. Functions 33

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

fiducia Documentation, Release 0.2.0

* detArr (xarray.DataArray) — Matrix representing the spectrally integrated folding
of the detector response with a cubic spline interpolation of the x-ray spectrum. 2D array of
channels and knot points of shape (n, n).

* detArrBoundaryCol (xarray.DataArray) — Column of cublic spline matrix cor-
responding to the knots at the boundary chosen with boundary.

* detArrVarianceBoundaryCol (xarray.DataArray) — Column of variances in
the cublic spline matrix corresponding to the knots at the boundary chosen with boundary.

* detArrInv (xarray.DataArray)— Inversion of detArr, with the column correspond-
ing to boundary removed so detAurr is invertible.

* stdDetArriInv (xarray.DataArray) — Array of the standard deviation of each ele-
ment in detArrlnv based on variance using the responseUncertaintyFrame propagated with
Monte Carlo.

* measurementFrame (pandas.core.frame.DataFrame) — Pandas dataframe
containing DANTE measurement data. See readDanteData() and readDanProcessed().

* time (float)— Time for which we want DANTE signals (in ns).

* signalsUncertainty (numpy.ndarray, optional) — One dimensional array
with each element corresponding to the uncertainty each signal. The default is None.

* yGuess (float, optional)— Guess for position of boundary knot point. Default 0.

* boundary (str, optional)- Choose whether yGuess corresponds to yo (lowest pho-
ton energy) or y,,+1 (highest photon energy) boundary condition. This should correspond to
the photon energy value given in knots. Options are y0 or yn+1. Default ‘y0’.

* nPtsIntegral (int, optional)-— Number of points used in computing the integral.
Default is 100.

* nPtsSpectrum (int, optional)— Number of points to use in reconstructing the
spectrum. Default is 100.

* plotKnots (Bool, optional) - Flag for plotting the Dante signal at the given time
across all channels. Default is False.

* plotKnots — Flag for plotting just the solved knot points. Default is False.

* plotSpectrum(Bool, optional)-Flag for plotting the unfolded spectrum. Default
is True.

Returns

* knotsYAIll (numpy.ndarray) — Array of knot point intensity values with yGuess appended.
See knotSolve() and analyzeSpectrum().

* knotsY Variance (numpy.ndarray) — Array of knot point intensity uncertainty values with
yGuess appended. See knotSolve() and analyzeSpectrum().

* photonEnergies (numpy.ndarray) — Photon energy axis of unfolded spectrum.
* intensities (numpy.ndarray) — Spectral intensity axis of unfolded spectrum.

* intensitiesVariance (numpy.ndarray) — Uncertaitny (1 o) on spectral intensity values.

34 Chapter 9. Fiducia Main File (fiducia.main)

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

fiducia Documentation, Release 0.2.0

Notes

Examples

9.1.5 analyzeStreak

fiducia.main.analyzeStreak (channels, responseFrame, knots, detArr, detArrBoundaryCol, detAr-
rVarianceBoundaryCol, detArrinv, stdDetArrinv, measurementFrame,
timeStart, timeStop, timeStep, signalsUncertainty=None, yGuess=0,

boundary="y0', nPtsIntegral=100, nPtsSpectrum=100)
Given the response function file and the DANTE measurement data file, run cubic spline analysis to reconstruct

spectrum for a given time.
Parameters

* channels (list, numpy.ndarray)-— Listor array of relevant DANTE channel num-
bers.

* responseFrame (pandas.core. frame.DataFrame)—Pandas dataFrame contain-
ing response functions for each DANTE channel. See loadResponses().

* knots (list, numpy.ndarray) — List or array of knot point photon energy value.
See knotFind().

* detArr (xarray.DataArray) — Matrix representing the spectrally integrated folding
of the detector response with a cubic spline interpolation of the x-ray spectrum. 2D array of
channels and knot points of shape (n, n).

* detArrBoundaryCol (xarray.DataArray) — Column of cublic spline matrix cor-
responding to the knots at the boundary chosen with boundary.

* detArrVarianceBoundaryCol (xarray.DataArray) — Column of variances in
the cublic spline matrix corresponding to the knots at the boundary chosen with boundary.

* detArrInv (xarray.DataArray) - Inversion of detArr, with the column correspond-
ing to boundary removed so detAurr is invertible.

* stdDetArrInv (xarray.DataArray) — Array of the standard deviation of each ele-
ment in detArrInv based on variance using the responseUncertaintyFrame propagated with

Monte Carlo.

* measurementFrame (pandas.core.frame.DataFrame) — Pandas dataframe
containing DANTE measurement data. See loader.readDanteData () and
readDanProcessed ().

* timeStart (float) — Start time for producing temporally streaked DANTE spectra (in
ns).

* timeStop (f1oat)—End time for producing temporally streaked DANTE spectra (in ns).

* timeStep (float) — Time step size for producing temporally streaked DANTE spectra
(in ns).

* signalsUncertainty (numpy.ndarray, optional) — One dimensional array
with each element corresponding to the uncertainty each signal. The default is None.

* yGuess (float, optional)— Guess for position of boundary knot point. Default is
le-77.

* boundary (str, optional)-Choose whether yGuess corresponds to g (lowest pho-
ton energy) or y,,+1 (highest photon energy) boundary condition. This should correspond to
the photon energy value given in knots. Options are y0 or yn+1. Default ‘y0’.

9.1. Functions 35

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

fiducia Documentation, Release 0.2.0

* nPtsIntegral (int, optional)-— Number of points used in computing the integral.
Default is 100.

* nPtsSpectrum (int, optional) — Number of points to use in reconstructing the
spectrum. Default is 100.

Returns

Return type times
energies
spectra

spectraVariance

Notes

Examples

9.1.6 feelingLucky

fiducia.main. feelingLucky (dataFile, attenuatorsFile, offsetsFile, responseFile, csplineDatasetFile,

channels, area, angle, signalsUncertainty=None, peaksNum=2)
Attempt processing dante signals given dante data file and calibration files using sensible defaults.

Parameters
* dataFile (str)— Full path to the Dante .dat file containing dante signals from LLE site.

* attenuatorsFile (str) — Full path to file containing attenuator serial numbers and
corresponding attenuation factors.

* offsetsFile (str) — Full path to file containing oscilloscope channel offsets in time
and voltage.

* responseFile (str)— Full path and filename of .csv file containing DANTE respones
functions corresponding to dataFile.

* csplineDatasetFile (str) — File pointing to the path of the saved dataset
containing “’detArr”, “’detArrBoundaryCol”, “detArrInv”, and “’stdDetArrInv”’. See
:func:’error.analyzeSpectrumUncertainty()’.

* channels (1ist, numpy.ndarray)— Listor array of relevant channels for which to
apply analysis.

* area (float)— Area of emitting surface in units of mm”2. For hohlraums/halfraums, this
is the area of the LEH. Used in Trad calculation.

* angle (float) — Angle between the surface area normal and the Dante line of sight in
degrees. Usually 37.4 degrees for hohlraums/halfraums. Used in Trad calculation.

* signalsUncertainty (numpy.ndarray, optional) — One dimensional array
with each element corresponding to the uncertainty each signal. The default is None.

36 Chapter 9. Fiducia Main File (fiducia.main)

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

fiducia Documentation, Release 0.2.0

Notes

Examples

9.1. Functions 37

fiducia Documentation, Release 0.2.0

38 Chapter 9. Fiducia Main File (fiducia.main)

CHAPTER
TEN

MISCELLANEOUS FUNCTIONS (FIDUCIA.MISC)

Created on Fri Mar 8 09:25:05 2019
Miscellaneous utilities

@author: Pawel M. Kozlowski

10.1 Functions

find_nearest(array, value) Find nearest value in array and return index, and value
as a tuple.
areDataFramesCompatible(channels, *frames) Check DataFrame compatibility for specified channels.

10.1.1 find_nearest
fiducia.misc.find_nearest (array, value)
Find nearest value in array and return index, and value as a tuple.
Parameters
* array (list, numpy.ndarray)— Array of values to be searched.

* value (int, float)— Value for which this function will find the nearest value in the
array.

Returns
* idx (int) — Index at which nearest value to input value occurs in the array.
* array[idx] (int, float) — The nearest value to the input value.

Notes

Examples

10.1.2 areDataFramesCompatible

fiducia.misc.areDataFramesCompatible (channels, *frames)
Check DataFrame compatibility for specified channels.

39

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

fiducia Documentation, Release 0.2.0

Checks if multiple pandas.core.frame.DataFrame objects are compatible and have the channels that are re-
quested. Checks that the DataFrames span the same energy range. Returns true if the frames pass all checks,
false otherwise.

Parameters
e channels (I1st) - List of relevant channels

* xframes (pandas.core. frame.DataFrame) — The DataFrames that you want to
check for compatiblity with the relevant channels

Returns True if frames are compatible with the requested channels, and False otherwise.
Return type bool

Notes

Examples

40 Chapter 10. Miscellaneous Functions (fiducia.misc)

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

CHAPTER
ELEVEN

PLOT DEFAULTS (FIDUCIA.PLTDEFAULTS)

Created on Fri Oct 27 02:37:12 2017
Default plotting parameters

@author: Pawel M. Kozlowski

11.1 Functions

plot_line_shaded(xData, yData, yErrsPos[,...]) Generate a line plot with shaded region representing y-
error bars.
plot_scatter_bars(xData, yData, yErrsPos[, Generate a scatter plot with y-error bars.

)

11.1.1 plot_line_shaded

fiducia.pltDefaults.plot_line_shaded (xData, yData, yErrsPos, yErrsNeg=[], label=",

**kwargs)
Generate a line plot with shaded region representing y-error bars. Can be run multiple times before plt.show(),

to plot multiple data sets on the same axes.
Parameters
* xData (numpy.ndarray) — X-axis data to be plotted.
» yData (numpy.ndarray) — Y-axis data to be plotted.
* yErrsPos (numpy.ndarray) — Errors on yData.
* yErrsPos — When errors on yData are asymmetric, these are the positive side errors.

* yErrsNeg (numpy.ndarray) — When errors on yData are asymmetric, these are the
negative side errors.

41

fiducia Documentation, Release 0.2.0

Notes

Examples

11.1.2 plot_scatter_bars

fiducia.pltDefaults.plot_scatter_ bars (xData, yData, yErrsPos, yErrsNeg=[], label=",

**kwargs)
Generate a scatter plot with y-error bars. Can be run multiple times before plt.show(), to plot multiple data sets

on the same axes.
Parameters
* xData (numpy.ndarray) — X-axis data to be plotted.
* yData (numpy.ndarray) — Y-axis data to be plotted.
* yErrsPos (numpy.ndarray) — Errors on yData.
* yErrsPos — When errors on yData are asymmetric, these are the positive side errors.

* yErrsNeg (numpy.ndarray) — When errors on yData are asymmetric, these are the
negative side errors.

Notes

Examples

42 Chapter 11. Plot Defaults (fiducia.pltDefaults)

CHAPTER
TWELVE

RAW DANTE DATA PROCESSING (FIDUCIA.RAWPROCESS)

Created on Wed Mar 13 16:43:39 2019

Utilities for processing raw DANTE data. Typical steps include:

* attenuator correction

* background shot subtraction

¢ channel alignment (via e.g. peak finding)
e temporal axis calibration

@author: Pawel M. Kozlowski

12.1 Functions

noScope(hf) Given a header frame, return a list of channels with no
scope.

noXRD(hf) Given a header frame, return a list of channels with no
XRD.

onChannel s(hf) Given a header frame, return a list of which dante chan-
nels were on for the shot.

t imesScope(hf) Given a headerFrame, returns a timesFrame contain-

ing an array of oscilloscope times for each channel and
background shot in the headerFrame.

voltageScale(hf, df)

Scales voltage (vertical) axis of dante signals based on
information contained in the header.

bkgCorrect(df, timesFrame)

Give a Dante data frame containing measurement data
and background shot data, remove the background from
the data and return the corrected data as a dataframe.

offsetCorrect(df, timesFrame, offsetsFile)

Reads given offset correction file (.xls) and applies off-
sets to dante measurement data given in dataframe.

attenuationFactors(hf, channels, attenua-

torsPath)

Given a header frame, return the attenuation factors ap-
plied to each channel.

attenuationCorrect(attenuatorsFile, hf, df, ...)

Given a Dante data frame and header frame, return a
data frame with attenuation corrections applied to each
channel.

t imeAvgBkg(times, signals, timeStart, timeEnd)

Calculates time averaged background for given data.

continues on next page

43

fiducia Documentation, Release 0.2.0

Table 1 — continued from previous page
avgBkgCorrect(timesFrame, df, channels], ...]) Applies background correction to bring the signal down
to zero, based on averaging the signal background over
a section of time from earliest time contained in times-
Frame to earliest time plus timeLength.

polyBkg(time, signal, lowerEdge, upperEdge) Fit polynomial function to ends of the signal as an esti-
mate of the background signal + hyesteresis.
signalEdges(timesFrame, df, channels|, ...]) Determines locations and widths of peaks above the

mean of the signal for each dante channel.

polyBkgFrame(timesFrame, df, edgesFrame, ...)
param timesFrame A dataframe contain-
ing time axis values corresponding to

signals in
highestPeak(signal, peakldxs) Find the highest peak, and return list of peaks with the
highest peak removed from the list.
highestN(signal, peakldxs[, peaksNum]) Select the N tallest peaks.

getPeaks(timesFrame, df, channels[, ...])
param timesFrame A dataframe contain-
ing time axis values corresponding to
signals in

alignPeaks(timesFrame, df, peaksFrame, channels)
param timesFrame A dataframe contain-
ing time axis values corresponding to
signals in

constructMeasurementFrame(timesFrame, df, Takes out put timesFrame and dataFrame from rawPro-

.2) cess.py functions and generates a measurementFrame
that can be passed to analyzeStreak() and other main.py
functions.

loadCorrected(danteFile, attenuatorsFile, .. .) Given a dante data file, an attenuators file, and an offsets

file, reads the file and applies background correction,
attenuation correction, and channel offset correction.
hysteresisCorrect(timesFrame, df, channels) Corrects for hysteresis by detecting edges of signal con-
taining region and fitting a polynomial background to
regions that do not belong to signal.
align(timesFrame, df, channels[, peaksNum, ...]) Aligns dante signals based on peak finding.

12.1.1 noScope
fiducia.rawProcess.noScope (if)
Given a header frame, return a list of channels with no scope. These are the channels that are off.

Parameters hf (pandas.core. frame.DataFrame)— Header frame from DANTE measure-
ment data. See readDanteData().

Returns Set of channels corresponding to oscilloscopes marked as “off” in the Dante data file header.

Return type set

44 Chapter 12. Raw Dante Data Processing (fiducia.rawProcess)

https://docs.python.org/3/library/stdtypes.html#set

fiducia Documentation, Release 0.2.0

Notes

Examples

12.1.2 noXRD

fiducia.rawProcess.noXRD (hf)
Given a header frame, return a list of channels with no XRD. If there is a scope, then these channels may still
register a signal!

Parameters hf (pandas.core. frame.DataFrame) — Header frame from DANTE measure-
ment data. See readDanteData().

Returns Set of channels corresponding to no XRDs marked in the Dante data file header.

Return type set

Notes

Examples

12.1.3 onChannels

fiducia.rawProcess.onChannels (/f)
Given a header frame, return a list of which dante channels were on for the shot.

Parameters hf (pandas.core. frame.DataFrame)— Header frame from DANTE measure-
ment data. See readDanteData().

Returns Set of channels corresponding oscilloscopes and XRDs marked as on within the Dante data
file header.

Return type set

Notes

Examples

12.1.4 timesScope

fiducia.rawProcess.timesScope (Af)
Given a headerFrame, returns a timesFrame containing an array of oscilloscope times for each channel and
background shot in the headerFrame.

Parameters hf (pandas.core. frame.DataFrame)— Header frame from DANTE measure-
ment data. See readDanteData().

Returns timesFrame — Returns a timesFrame containing the corresponding times for each oscillo-
scope trace contained in the header frame.

Return type pandas.core.frame.DataFrame

12.1. Functions 45

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set

fiducia Documentation, Release 0.2.0

Notes

Examples

12.1.5 voltageScale

fiducia.rawProcess.voltageScale (Xf, df)
Scales voltage (vertical) axis of dante signals based on information contained in the header. Returns a dataframe
with the dante signals in units of volts. Also returns an errors/uncertainties frame in units of volts, where the
uncertainty due to the 11-bit ADC converter has been calculated.

Parameters

* hf (pandas.core. frame.DataFrame)— Header dataframe from dante .dat file. See
readDanteData().

e df (pandas.core. frame.DataFrame)— Dante dataframe. See readDanteData().
Returns
o dfScaled (pandas.core.frame.DataFrame) — Dante dataframe with signals in units of volts.

* errFrame (pandas.core.frame.DataFrame) — Correspoding errors for dfScaled. Also in
units of volts.

Notes

Examples

12.1.6 bkgCorrect

fiducia.rawProcess.bkgCorrect (df, timesFrame)
Give a Dante data frame containing measurement data and background shot data, remove the background from
the data and return the corrected data as a dataframe. Note that the returned dataframe is different in a few ways
from the input dataframe. First, the returned dataframe is assumed to have strings as column headers, whereas
the returned dataframe will have integers (corresponding to dante channel number) as the column headers. In
addition, the input dataframe will start indexing at some number above O (usually 18, due to the header length),
whereas the returned dataframe is re-indexed to begin at 0.

A dataframe with corresponding time scales to df is also passed to this function for reindexing from strings to
integers. This also acts as a placeholder in case it is necessary to interpolate values if the background shot and
measurement shot timescales are not the same. Though this type of interpolation is not currently implemented.

Parameters

e df (pandas.core. frame.DataFrame) — Dataframe of raw dante data. This should
contain both the shot measurement and the shot background as columns. See readDante-
Data(). The columns in this dataframe are assumed to be strings.

* timesFrame (pandas.core. frame.DataFrame)— Dataframe containing time axis
corresponding to dante signals in df dataframe. See timesScope().

Returns

* timesBkg (pandas.core.frame.DataFrame) — Returns a dataframe of times corresponding
to dfCorrected signals. The columns in this dataframe are integers corresponding to Dante
channel number.

46 Chapter 12. Raw Dante Data Processing (fiducia.rawProcess)

fiducia Documentation, Release 0.2.0

» dfCorrected (pandas.core.frame.DataFrame) — Returns a dataframe of background sub-
tracted dante signals. The columns in this dataframe are integers corresponding to Dante
channel number.

Notes

Examples

12.1.7 offsetCorrect

fiducia.rawProcess.offsetCorrect (df, timesFrame, offsetsFile)
Reads given offset correction file (.xls) and applies offsets to dante measurement data given in dataframe. The
input dataframe should already be background corrected and scaled to units of volts, see bkgCorrect() and
voltageScale(). Note that although timing offsets are also applied, they are not as relevant since timing should
be realigned to a fiducial peak anyway. Additional attenuation is not implemented and an error will be raised if
the offsets file contains attenuation values other than 1. Returns a dataframe with applied offsets.

Parameters

* df (pandas.core. frame.DataFrame)—Dante dataframe with background corrected
values and scaled to units of volts. See readDanteData(), bkgCorrect() and voltageScale().

* timesFrame (pandas.core. frame.DataFrame)— Dataframe containing time axis
corresponding to dante signals in df dataframe. See timesScope() and bkgCorrect().

Returns
* offsetsFile (str) — Full path to .xIs file containing dante channel offsets.

» dfOffset (pandas.core.frame.DataFrame) — Dante dataframe with applied offset corrections

Notes

Examples

12.1.8 attenuationFactors
fiducia.rawProcess.attenuationFactors (hf, channels, attenuatorsPath)
Given a header frame, return the attenuation factors applied to each channel.
Parameters

* hf (pandas.core. frame.DataFrame) — Pandas dataframe containing dante header
information. See readDanteData().

* channels (set) — Set of channels to be analyzed.

* attenuatorsPath (st r) — Full path to excel file containing attenuator serial numbers
and corresponding attenuation factors.

Returns

Return type chFactors

12.1. Functions 47

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str

fiducia Documentation, Release 0.2.0

Notes

Examples

12.1.9 attenuationCorrect

fiducia.rawProcess.attenuationCorrect (attenuatorsFile, hf, df, channels)
Given a Dante data frame and header frame, return a data frame with attenuation corrections applied to each
channel.

Parameters

* attenuatorsFile (str) — Full path to .xIs file containing attenuator serial numbers
and corresponding attenuation factors. See attenuationFactors().

* hf (pandas.core. frame.DataFrame)— Header dataframe from dante .dat file. See
readDanteData().

e df (pandas.core.frame.DataFrame) — Dante dataframe. This frame should al-
ready be voltage scaled, background corrected, and offset corrected. See readDanteData().

* channels (1ist)— List of dante channels in df to be analyzed.

Returns dfAtten — Returns dataframe with attenuation corrected signal values for the given chan-
nels.

Return type pandas.core.frame.DataFrame

Notes

Examples

12.1.10 timeAvgBkg

fiducia.rawProcess.timeAvgBkg (times, signals, timeStart, timeEnd)
Calculates time averaged background for given data.

Parameters times —
signals:
timeStart:
timeEnd:

Returns

Return type avg

48 Chapter 12. Raw Dante Data Processing (fiducia.rawProcess)

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

fiducia Documentation, Release 0.2.0

Notes

Examples

12.1.11 avgBkgCorrect

fiducia.rawProcess.avgBkgCorrect (timesFrame, df, channels, timeLength=1e-09)
Applies background correction to bring the signal down to zero, based on averaging the signal background over
a section of time from earliest time contained in timesFrame to earliest time plus timeLength.

Parameters

* timesFrame (pandas.core. frame.DataFrame) — Dataframe of time axis values
corresponding to signals in df. These should be in units of seconds.

* df (pandas.core. frame.DataFrame) — Dataframe of dante signals. These should
already be attenuation corrected and in units of volts.

* channels (set) — Set of channels to be analyzed.

* timeLength (f1oat)—Duration of time from initial time over which to take the average.
In units of seconds.

* dfAvqg (pandas.core. frame.DataFrame) — Returns a dataframe containing aver-
age background corrected signals.

Returns

Return type dfAvg

Notes

Examples

12.1.12 polyBkg

fiducia.rawProcess.polyBkg (time, signal, lowerEdge, upperEdge, order=3, lowerLength=None, up-

perLength=None, plot=False)
Fit polynomial function to ends of the signal as an estimate of the background signal + hyesteresis. Default is

cubic fit.
Parameters
* time (numpy.ndarray) — array of times corresponding to signal
* signal (numpy.ndarray) — array of signal values for a single dante channel

* lowerEdge (int) — Index of time array corresponding to lower edge of detected signal.
See signalEdges().

* upperEdge (int) — Index of time array corresponding to upper edge of detected signal.
See signalEdges().

* order (int) - Order of polynomial to be fitted to estimated background/hysteresis.

* lowerLength (int) — Length over which to take the polynomial background fit on the
lower end (earlier in time) segment of the signal, with respect to lowerEdge. Default is
None, which just takes the first point in the signal.

12.1. Functions 49

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

fiducia Documentation, Release 0.2.0

* upperLength (int) — Length over which to take the polynomial background fit on the
upper end (later in time) segment of the signal, with respect to upperEdge. Defualt is None,
which then just picks the second to last point in the signal.

* plot (boo1l) - Flag for plotting polynomial fitted background signal. Default is False.
Returns
Return type time

fitSignal:

Notes

Examples

12.1.13 signalEdges

fiducia.rawProcess.signalEdges (timesFrame, df, channels, sigmaMult=3, plot=False, promi-

nence=0.1, width=10, avgMult=1)
Determines locations and widths of peaks above the mean of the signal for each dante channel. Edges of the

signal containing region are then obtained by moving sigmaMult peak widths away from the earliest and latest
peaks. Returns these lower and upper bound edges of the signal containing region as a dataframe. These edges
are useful for fitting and removing the background/hysteresis.

Parameters

* timesFrame (pandas.core. frame.DataFrame) — A dataframe containing time
axis values corresponding to signals in df.

e df (pandas.core. frame.DataFrame) — A dataframe of corrected/calibrated dante
signal measurements.

* channels (1ist)— List of channels in df for which edges will be determined.

* sigmaMult (float) — Multiplier factor by which the lower and upper bounds of the
signal containing region are determined. The lower bound is determined by sigmaMult times
the width of the earliest peak away from the earliest peak. The upper bound is determined
by sigmaMult times the width of the latest peak away from the latest peak. Default is 3 for
approximately 3*sigma away from each peak.

* plot (bool) - Flag for plotting peak locations and widths. Default is False.

* edgesFrame (pandas.core. frame.DataFrame) — Lower and upper bound edges
of the signal containing region for each dante channel. The lower bound is in 0 index and
the upper bound is in 1 index. The bounds are given in index coordinates and they have been
rounded to the nearest point.

* prominence (float) — Prominence threshold for identifying peaks in scipy’s
find_peaks().

e width (int)— Width in index units for identifying peaks in scipy’s find_peaks().

* avgMult (float)— Multiplicative factor for setting minimum intensity threshold for in-
dentifying peaks in scipy’s find_peaks(). This is a multiple of the signal average.

Returns

Return type edgesFrame

50 Chapter 12. Raw Dante Data Processing (fiducia.rawProcess)

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

fiducia Documentation, Release 0.2.0

Notes

Examples

12.1.14 polyBkgFrame

fiducia.rawProcess.polyBkgFrame (timesFrame, df, edgesFrame, channels, order=3, plot=False)
Parameters

* timesFrame (pandas.core.frame.DataFrame) — A dataframe containing time
axis values corresponding to signals in df.

* df (pandas.core. frame.DataFrame) — A dataframe of corrected/calibrated dante
signal measurements.

* edgesFrame (pandas.core. frame.DataFrame) — Dataframe describing edges of
the signal containing region, outside of which should be just background. This function will
fit to these two early time and late time background containing regions. See signalEdges().

* channels (1ist)— A list of channels for which to apply analyis.
* order (int) - Order of polynomial to be fitted to estimated background/hysteresis.

* plot (bool) — Flag for plotting fitted background and background subtracted signal. De-
fault is False.

Returns

Return type dfPoly

Notes

Examples

12.1.15 highestPeak

fiducia.rawProcess.highestPeak (signal, peakldxs)
Find the highest peak, and return list of peaks with the highest peak removed from the list.

Parameters

* signal (pandas.core.series.Series)— A data series consisting of signals from
a single dante channel.

* peakIdxs (Iist) — A list of indices corresponding to peaks identified in the signal by
using scipy’s find_peaks() function.

Returns
» peakHighestldx (inf) — Returns the index corresponding to the highest peak.

 peakldxs2 (l/ist) — Returns a list of peak index locations with the highest peak removed from
the list. This makes it easier for highestN() to apply highestPeak() iteratively to find the N
highest peaks.

12.1. Functions 51

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

fiducia Documentation, Release 0.2.0

Notes

Examples

12.1.16 highestN
fiducia.rawProcess.highestN (signal, peakldxs, peaksNum=2)
Select the N tallest peaks.
Parameters

* signal (pandas.core.series.Series)— A data series consisting of signals from
a single dante channel.

* peakIdxs (1ist) — A list of indices corresponding to peaks identified in the signal by
using scipy’s find_peaks() function.

* peaksNum (int)— Number of peaks to grab from peakldxs. This function will grab just
the N tallest peaks where N=peaksNum.

Returns highestPeaks — Array of indices corresponding to the highest peaks. Peaks are ordered
from highest to lowest.

Return type numpy.ndarray

Notes

Examples

12.1.17 getPeaks
fiducia.rawProcess.getPeaks (timesFrame, df, channels, peaksNum=2, plot=False, promi-
nence=0.1, width=10, avgMult=1)
Parameters

* timesFrame (pandas.core. frame.DataFrame) — A dataframe containing time
axis values corresponding to signals in df.

e df (pandas.core. frame.DataFrame) — A dataframe of corrected/calibrated dante
signal measurements.

* channels (11ist)— A list of channels for which to apply analyis.

* peaksNum (int)— Number of peaks to grab from peakldxs. This function will grab just
the N tallest peaks where N=peaksNum.

* peaksNum — Number of peaks to grab from peakldxs. This function will grab just the N
tallest peaks where N=peaksNum.

* plot (bool) — Flag for plotting identified peaks, with prominences, and widths, overlaid
with the corresponding dante signal, and the average dante signal.

* peaksFrame (pandas.core. frame.DataFrame)— Returns a dataframe containing
indices of the identified peaks sorted from the peak that occurs earliest in time to the latest
in time.

* prominence (float) — Prominence threshold for identifying peaks in scipy’s
find_peaks().

e width (int)— Width in index units for identifying peaks in scipy’s find_peaks().

52 Chapter 12. Raw Dante Data Processing (fiducia.rawProcess)

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

fiducia Documentation, Release 0.2.0

* avgMult (f1oat)— Multiplicative factor for setting minimum intensity threshold for in-
dentifying peaks in scipy’s find_peaks(). This is a multiple of the signal average.

Returns

Return type peaksFrame

Notes

Examples

12.1.18 alignPeaks

fiducia.rawProcess.alignPeaks (timesFrame, df, peaksFrame, channels, peakAlignldx=0,
referenceTime=1e-09, plot=False)

Parameters

* timesFrame (pandas.core. frame.DataFrame) — A dataframe containing time
axis values corresponding to signals in df.

e df (pandas.core. frame.DataFrame) — A dataframe of corrected/calibrated dante
signal measurements.

* peaksFrame (pandas.core. frame.DataFrame)— Dataframe containing positions
of N highest peaks and sorted from earliest in time to latest in time. See getPeaks().

* peakAlignIdx (int) — Picks which peak to align to. O is first peak, 1 is second peak in
peaksFrame, etc.

* referenceTime (f1oat)— Time in s to which align peaks. Default is 1e-9 s or 1 ns.
* plot (bool) - Flag for plotting aligned dante signals. Default is False.

Returns timesAligned — Returns a dataframe identical in shape to timesFrame, but with the times
for each dante channel offset such that the selected peaks are temporally aligned.

Return type pandas.core.frame.DataFrame

Notes

Examples

12.1.19 constructMeasurementFrame

fiducia.rawProcess.constructMeasurementFrame (timesFrame, df, channels)
Takes out put timesFrame and dataFrame from rawProcess.py functions and generates a measurementFrame that
can be passed to analyzeStreak() and other main.py functions.

Converts units from seconds to nanoseconds.
Parameters

* timesFrame (pandas.core.frame.DataFrame) — A dataframe containing time
axis values corresponding to signals in df.

* df (pandas.core. frame.DataFrame) — A dataframe of corrected/calibrated dante
signal measurements.

* channels (1ist)— A list of channels for which to apply analyis.

12.1. Functions 53

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

fiducia Documentation, Release 0.2.0

Returns

measurementFrame — Returns a measurementFrame which can be passed to main.py

functions such as analyzeSpectrum() and analyzeStreak().

Return type pandas.core.frame.DataFrame

Notes

Examples

12.1.20 loadCorrected

fiducia.rawProcess.loadCorrected (danteFile, attenuatorsFile, offsetsFile, cut=None, plot=False,

Given a dante

addCh=[])
data file, an attenuators file, and an offsets file, reads the file and applies background correction,

attenuation correction, and channel offset correction. Returns the corrected data traces as a pandas dataframe.
The row indices of this dataframe also contain the correct time scaling given the oscilloscope settings, but
note that the channels are not aligned. User must apply alignment correction using some measured signal as a
temporal fiducial.

Parameters

Returns

danteFile (str)— Full path to .dat file containing raw dante traces.

attenuatorsFile (st r)—Full path to the .xls file containing attenuator serial numbers
and corresponding attenuation factors.

offsetsFile (str)— Full path to .xls file containing dante channel offsets.

cut (int) — Number of points to cut from leading and trailing end of each Dante channel
trace. This is used to remove noise that occurs at the edges of the signal. Default is None,
which means no cut is applied.

plot (bool)—Flag for plotting data after each calibration/correction step. Default is False.

addcCh (1ist) — Add channels to analyze. This is used to override which channels are
listed as on in the header of the data dante data file.

Return type timeOffset

dfAvg:
onChList:
hf:
dfVolt:

Notes

Examples

12.1.21 hysteresisCorrect

fiducia.rawProcess.hysteresisCorrect (timesFrame, df, channels, order=5, prominence=0.2,

width=10, avgMult=1)

Corrects for hysteresis by detecting edges of signal containing region and fitting a polynomial background to
regions that do not belong to signal. This background is then subtracted.

54

Chapter 12. Raw Dante Data Processing (fiducia.rawProcess)

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

fiducia Documentation, Release 0.2.0

Parameters

timesFrame (pandas.core. frame.DataFrame) — Time corresponding to df

df (pandas.core. frame.DataFrame) — Dataframe of dante signals. See loadCor-
rected().

channels (1ist)— A list of channels for which to apply analyis.
order (int)— Polynomial order to be fitted to hysteresis/background.

prominence (float) — Prominence threshold for identifying peaks in scipy’s
find_peaks().

width (int)— Width in index units for identifying peaks in scipy’s find_peaks().

avgMult (float)— Multiplicative factor for setting minimum intensity threshold for in-
dentifying peaks in scipy’s find_peaks(). This is a multiple of the signal average.

Returns dfPoly — Returns a dataframe of hysteresis corrected dante signals.

Return type pandas.core.frame.DataFrame

Notes

Examples

12.1.22 align

fiducia.rawProcess.align (timesFrame, df, channels, peaksNum=1, peakAlignldx=0,

referenceTime=1e-09, prominence=0.01, width=10, avgMult=1.5)

Aligns dante signals based on peak finding.

Parameters

timesFrame (pandas.core. frame.DataFrame)— Time corresponding to df

df (pandas.core. frame.DataFrame) — Dataframe of dante signals. See loadCor-
rected().

channels (11ist)— A list of channels for which to apply analyis.

peaksNum (int) — Number of peaks to grab from peakldxs. This function will grab just
the N tallest peaks where N=peaksNum.

peakAlignIdx (int)— Picks which peak to align to. O is first peak, 1 is second peak in
peaksFrame, etc.

referenceTime (float)— Time in s to which align peaks. Default is 1e-9 s or 1 ns.

prominence (float) — Prominence threshold for identifying peaks in scipy’s
find_peaks().

width (int)— Width in index units for identifying peaks in scipy’s find_peaks().

avgMult (float)— Multiplicative factor for setting minimum intensity threshold for in-
dentifying peaks in scipy’s find_peaks(). This is a multiple of the signal average.

Returns timesAligned — Returns a dataframe of times corresponding to signals in df, such that the
signals are now aligned to the given peak.

Return type pandas.core.frame.DataFrame

12.1. Functions

55

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

fiducia Documentation, Release 0.2.0

Notes

Examples

56 Chapter 12. Raw Dante Data Processing (fiducia.rawProcess)

CHAPTER
THIRTEEN

DANTE RESPONSE FUNCTIONS (FIDUCIA.RESPONSE)

Created on Fri Mar 8 09:23:02 2019
Utilities for working with DANTE response functions (e.g. plotting, locating edges).
@author: Pawel M. Kozlowski

13.1 Functions

knotFind(channels, responseFramel[, ...]) Find knot points.

13.1.1 knotFind

fiducia.response.knotFind (channels, responseFrame, forceKnot=array([], dtype=float64), knot-
Boundary=0, boundary="y0")
Find knot points.

Find knot points for cubic splines based on positions of K-edges of each DANTE channel filter.
Parameters
* channels (1ist, numpy.ndarray)— Listor array of relevant channels

* responseFrame (pandas.core. frame.DataFrame)—Pandas dataFrame contain-
ing response functions for each DANTE channel. See loadResponses().

* forceKnot (numpy.ndarray) — Numpy array where first column is channelNumber
and second column is the corresponding photonEnergy we wish to force. Use this for chan-
nels that do not have a distinct K-edge.

* knotBoundary (float) — Photon energy value for either y_0 or y_{n+1} boundary
condition. This value gets appended to the array of photon energies otherwise found by
knotFind().

Returns knotsAppend — An array of knot points, with each element corresponding to a channel or
boundary condition.

Return type numpy.ndarray

57

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

fiducia Documentation, Release 0.2.0

Notes

Examples

58 Chapter 13. Dante Response Functions (fiducia.response)

CHAPTER
FOURTEEN

UNCERTAINTY PROPAGATION FOR COMMON OPERATIONS
(FIDUCIA.STATS)

Created on Tue Jul 21 12:11:12 2020
Common statistic operations

@author: Myles T. Brophy

14.1 Functions

simpsVariance(yUncl, X, dx]) Propagates variance (o) through Simpson’s rule nu-
merical integration.

trapzVariance(yUnc|, x, dx]) Error propogation for Trapezoidal rule integration using
uniform or non-uniform grids.

gradientVariance(yUnc|, x, dx]) Propogates uncertainty for the gradient operator of an
array of a given step size.

dotVariance(a, b[, aUncertainty, bUncertainty]) Propogate uncertainty for the dot product of matrix a
and 1D vector b.

interpVariance(x, xp, fpUnc[, leftVar, ...]) Propagate uncertainty for linear interpolation.

14.1.1 simpsVariance
fiducia.stats.simpsVariance (yUnc, x=None, dx=1.0)
Propagates variance (0'2) through Simpson’s rule numerical integration.
NOTE: THIS FUNCTION IS INCOMPLETE AND HAS NOT BEEN VERIFIED 2020-08-21 PMK.
Parameters
* yUnc (1ist, numpy.ndarray)— Uncertainties in the vertical axis.

e x(list, numpy.ndarray, optional) - Horizontal coordinates corresponding to
yUnc. Default is None, which generates a uniformly spaced linear array of horizontal coor-
dinates based on the length of yUnc and the value of dx.

e dx (float, optional)- Uniform spacing between horizontal coordinates correspond-
ing to yUnc. Default is 1.0.

Returns variance — Variance (o) on value of integral from Simpson’s rule numerical integration.

Return type float

59

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

fiducia Documentation, Release 0.2.0

Notes

Based on a modified verison of: https://en.wikipedia.org/wiki/Simpson’s_rule#Composite_Simpson’s_rule_for_irregularly_spa

Examples

14.1.2 trapzVariance
fiducia.stats.trapzVariance (yUnc, x=None, dx=1.0)
Error propogation for Trapezoidal rule integration using uniform or non-uniform grids.
Parameters
* yUnc (1ist, numpy.ndarray)— The list of uncertainities, referenced as o;.

e x(list, numpy.ndarray, optional)-The sampling points for which the uncer-

(R}

tainites ’y” were found. Must be the same length as “’y”. If none are provided, then the
step size will be uniform and set with ’dx”. The default is None.

e dx(int, float, optional)- Step size. Only applies if sampling points aren’t spec-
ified with “x”. The default is 1.0.

Returns variance — The total variance (02) found by propagating *’y”.

Return type float

Notes

Trap rule integration with non uniform spacing takes the form

N

> A5 (@) + 1))

k=1

Propogating the uncertainties through this integration results in

N N-1
1
o2 = 1 (Z Azio? | + 07 +2 Z Az;Az; + 10?)

k=1 k=1

The equation is generalized and applies to uniform and non-uniform step sizes.

Examples

14.1.3 gradientVariance

fiducia.stats.gradientVariance (yUnc, x=None, dx=1.0)
Propogates uncertainty for the gradient operator of an array of a given step size.

Parameters

e yUnc (list, numpy.ndarray) — The list of uncertainities, referenced as
:math:’sigma_i’.
* x(list, numpy.ndarray, optional)-The sampling points for which the uncer-

tainites ’y”” were found. Must be the same length as “’y”. If none are provided, then the
step size will be uniform and set with “’dx”. The default is None.

60 Chapter 14. Uncertainty Propagation for Common Operations (fiducia.stats)

https://en.wikipedia.org/wiki/Simpson's_rule#Composite_Simpson's_rule_for_irregularly_spaced_data
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

fiducia Documentation, Release 0.2.0

e dx (Ilist, numpy.ndarray, optional) — Step size. Only applies if sampling
points aren’t specified with “’x”. The default is 1.0.

Returns variance — The total variance (02) found by propagating *’y”.

Return type float

Notes
h? 2 h2 4+ h? V202 — hio2
Var(Vyl) — 1710'1+1 + (() 4 271)' 1 5 zo'zfl
(hzhz—l(hz + hz—l))
At the boundaries
02— o2 o L — 0%
Var(Vyy) = liz(),Var(VyN,l) = w
ho hN—Z

Examples
14.1.4 dotVariance

fiducia.stats.dotVariance (a, b, aUncertainty=None, bUncertainty=None)
Propogate uncertainty for the dot product of matrix a and 1D vector b.

Propogate uncertainty for the dot product of a matrix and a 1D vector. Assumes no covariance between a and b.
Methodology is similar to numpy . dot () where:

 If both a and b are 1D, the uncertainty of the inner product of vectors is returned.

e If ‘a’ is N dimensional (Where :math: N>=2) and b is 1D, the uncertainty of the sum product of the last
axis of a with b is returned.

0-D (scalar) arrays are not supported. b arrays that have more than one axis are not supported. a and b must
have the same shape as aUncertainty and bUncertainty, respectively.

Parameters
* a(numpy.ndarray, 1ist)— Matrix or vector to dot with ‘b’.

* b (numpy.ndarray, 11ist)— Vectorthat ‘a’ will be dotted with. Must be the same size
as the last axis of a.

* aUncertainty (numpy.ndarray, optional)-Uncertainty of eachelementin ‘a’.
The default is None.

* bUncertainty (numpy.ndarray, optional) — Uncertainty of each element in
‘b’. The default is None.

Returns variance

Return type float

14.1. Functions 61

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

fiducia Documentation, Release 0.2.0

Notes

N
Var(A- B) = ZVar(aibi)
i=1

Assuming covariance between independent variables

N

Z(aigbi)2 + (bigai)2

=1
Examples

14.1.5 interpVariance
fiducia.stats.interpVariance (x, xp, fpUnc, leftVar=None, rightVar=None, period=None)
Propagate uncertainty for linear interpolation.
Parameters

* x (numpy.ndarray, 1list)- The x-coordinates at which to evaluate the interpolated
values.

* xp (numpy.ndarray, 1list) - The 1D x-coordinates of the data points, must be in-
creasing order

* fpUnc (numpy.ndarray, 1ist)— The uncertainty in the y-coordinates of the data
points, same length as xp.

* leftVar (float, optional)- Variance to return for x < xp[0]. If not given, the first
yUnc element will be used. Default is None

* rightVar (float, optional) - Variance to return for x > xp[-1]. If not given, the
last yUnc element will be used. Default is None

Returns yVar — 1D array containing the variance for each interpolated x.

Return type numpy.ndarray

Notes
Variance of interpolated point, assuming no uncertainty in x and xp, and no covariance between y-coordinates,
is given by

1

Varly) = e

(&1 —)0, + (z — x0)07,)

Examples

Derivations for propagating uncertainty for some common operations.

14.1.6 Weighted Summation

Gien a vector X; with N elements

N N
Var (Z aiXi> = Za? Var(X;) + 22 Z a;a; Cov(X;, X;)
k=1 k=1

1<i <j<n

62 Chapter 14. Uncertainty Propagation for Common Operations (fiducia.stats)

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

fiducia Documentation, Release 0.2.0

A simplified version of this can be written as

_ 2 _ 2 2 2 2 2
Var(aac + by) - Usumming independent variables — a0y + b Uy + 2abazy

14.1.7 Trap Rule Variance

For N steps of Az = xp41 —) wWhere f(xx) = yi, where each yy, is independent, an integral can be approximated
as

b N
/ f(@)dx ZAmk “(yk—1 + yr)

k=1

To find the variance in the general case, use the last 3 equations.

N Ax N Az
k=1 k=1
Var (Z 5 (Yk—1 + Yk) Var (Z 2 yk>

k=1
1< 1 1 1<
= Var (2 Z Axklyk1> + Var (2 Z A:cklyk) + 2 Cov (2 Z ATk _1Yp_1, 5 Z Axklyk>
k=1 k=1 k=1 k=1
The two first Var terms are simple
1 1
1 (ar(Azy 1Yk 1)) 1 (;Vﬁr (Azy— lyk)>

4>\>—~ IIMZ

N N
(Z a3y Var(ye—1 +2Azk 1Var(yk)>

k=1 k=1

N N
1
<ZA$k 10 1+ZA$k 1%) :ZZAfciq(U%q‘Fai)

k=1

where o, is the uncertainty of y;. Now for the Covariance of the two summations

L L L N1
Cov (2 ;Am—wk—l, 5 ;Afﬂk—lyk> =1 ; Az Axyo}

Combine all this and the fourth equation to get

N-1
1
(ZAxk (o2 + o) —l—QZAxk 1Aa?kak>

k=1 k=1

In the simple case of a uniform grid, where all Az, = Ax this can be expanded to
Ax?
Z (O’O + 407 + 403 + ... + o3, —|—0N)

14.1.8 Gradient Variance

From the numpy.grad documentation, the gradient for discrete step sizes is approximated by

h%—lf(xi + h;) + (h? - h?—l)f(xi) - h?f(l‘i —hi—1)
hihi—1(hi + hi—1)

Vf(z;) =

14.1. Functions 63

https://numpy.org/doc/stable/reference/generated/numpy.gradient.html

fiducia Documentation, Release 0.2.0

with the gradient at the first and the last data point being

V() = BV ay) = P

for a list of z; data points and hg = 2,11 —2; = h; and hy = x; —x;_1 = h;_1. From this we can say that f(z;) = y;
and f(x; + h;) = y;+1 and f(z; — hs) = y;—1. Using the variance of weighted sums where the weights are the h
terms we get

Var(Vyi) —02 = h?—laig-H + (h% - h?_l)QJ? - h?a?_l
v (hihi—1(hi + hi—1))?

where o, corresponds to the uncertainty in y;. Keep in mind that there are N y values and N — 1 h values because
h; is the difference between the N data points. Note that unlike in the Trap rule integration, the covariant term is 0
because no repeated uncertainty terms appear in the sum. At the borders ¢ = 0, NV the variance is

2
o2 — o2

2
0% — 0
i,Var(VyN) — N “N-1

Var(Vy;) =
h?

14.1.9 Dot Product Variance

The dot product of vectors X, Y is defined as
N
X Y= Z Y
i=1

Uncertainty propagation when multiplying two variables, f(u,v) = auv, with a as a constant, is given by

2

f(u,v) = (auc,)? + (avo,)? + 2a*uvo?,

For the dot product we assume there is no covariance between X and Y because they are independent. This gets us

operatorname{ Var }(X cdot Y) = sum_{i=1}"N (x_i sigma_{y_i})"2 + (y_i sigma_{x_i})"2

14.1.10 Linear interpolation

Linear interpolation of a point 2y < z < x1 is given by

yo(r1 —) +y1(x — x0)
Tr1 — X0

y:

First thing we can do, to make this calculation easier, is assume that there is no uncertainty in the x; terms. This is a
short cut, but it's all that’s required for the application in which this linear interpolation is being implemented. Starting
with the numerator, we can use the weighted summation rules to say
2 2 2 2
Var(yo(z1 —) + y1(x — 20)) = (21 —) Ty T (x — x0) Ty
where there is no covariant term, because we assume ¥ and y; and independent. Then, including the denominator as
a constant (because we assume all z values have no uncertainty, we get a variance of

1

Var(y) = m((ﬂfl —)’y + (z —x)’0},)

Y1

64 Chapter 14. Uncertainty Propagation for Common Operations (fiducia.stats)

CHAPTER
FIFTEEN

VISUALIZATION UTILITIES (FIDUCIA.VISUALIZATION)

Created on Fri Mar 8 10:49:17 2019
Utilities for visualizing DANTE data.
@author: Pawel M. Kozlowski

15.1 Functions

plotResponse(channels, responseFrame, knots) Plots response function curves with knot locations iden-
tified as vertical dashed lines.

plot Traces(channels, measurementFramel[, scale]) Given a dataframe of Dante channel data, plot all the
signal traces onto a single plot.

plotStreak(times, energies, spectra) Plot streak of unfolded Dante spectra.

signalImg(signalsArr) Visualize dante signals as an image.

15.1.1 plotResponse

fiducia.visualization.plotResponse (channels, responseFrame, knots, solid=True, title="Dante

Response Functions')
Plots response function curves with knot locations identified as vertical dashed lines.

channels: list, numpy.ndarray List or array of relevant channels

responseFrame: pandas.core.frame.DataFrame Pandas dataFrame containing response functions for each
DANTE channel. See loadResponses().

knots: list, numpy.ndarray List or array of knot point photon energy value. See knotFind().

solid: Bool Includes solid angle in response function value if true. Necessary for plotting responses with correct
units.

65

fiducia Documentation, Release 0.2.0

Notes

Examples
15.1.2 plotTraces

fiducia.visualization.plotTraces (channels, measurementFrame, scale="regular’)
Given a dataframe of Dante channel data, plot all the signal traces onto a single plot.

channels: list, numpy.ndarray List or array of relevant channels

measurementFrame: pandas.core.frame.DataFrame Pandas dataframe containing DANTE measurement
data. See readDanteData() and readDanProcessed().

Notes

Examples

15.1.3 plotStreak

fiducia.visualization.plotStreak (times, energies, spectra)
Plot streak of unfolded Dante spectra. See analyzeStreak().

Parameters

* times (numpy.ndarray) — Array of times for which the unfold was analyzed.

* energies (numpy.ndarray)— Array of photon energies corresponding to the unfolded
spectra.

* spectra (numpy.ndarray) — The unfolded spectral intensities as a 2D array. See ana-
lyzeStreak().

Notes
Examples
15.1.4 signallmg

fiducia.visualization.signalImg (signalsArr)
Visualize dante signals as an image.

Parameters signalsArr (numpy.ndarray)—

Notes

Examples

66 Chapter 15. Visualization Utilities (fiducia.visualization)

CHAPTER
SIXTEEN

INDICES AND TABLES

* genindex
¢ modindex

¢ search

67

fiducia Documentation, Release 0.2.0

68 Chapter 16. Indices and tables

PYTHON MODULE INDEX

f

fiducia.cspline, 13
fiducia.error, 21
fiducia.loader, 27
fiducia.main, 31
fiducia.misc, 39
fiducia.pltDefaults,4l
fiducia.rawProcess, 43
fiducia.response, 57
fiducia.stats, 59
fiducia.visualization, 65

69

fiducia Documentation, Release 0.2.0

70 Python Module Index

A

align () (in module fiducia.rawProcess), 55

alignPeaks () (in module fiducia.rawProcess), 53

analyzeSpectrum () (in module fiducia.main), 33

analyzeStreak () (in module fiducia.main), 35

areDataFramesCompatible () (in module fidu-
cia.misc), 39

attenuationCorrect () (in module fidu-
cia.rawProcess), 48
attenuationFactors () (in module fidu-

cia.rawProcess), 47
avgBkgCorrect () (in module fiducia.rawProcess),
49

B

bkgCorrect () (in module fiducia.rawProcess), 46

C

cleanupHeader () (in module fiducia.loader), 27
constructMeasurementFrame () (in module fidu-
cia.rawProcess), 53

D

dCoeffArr () (in module fiducia.cspline), 15

detectorArr () (in module fiducia.cspline), 18

detectorArrVariance () (in module fiducia.error),
24

detectorErrMC () (in module fiducia.error), 21

detectorUncertainty () (in module fiducia.error),
25

dotVariance () (in module fiducia.stats), 61

dToyArr () (in module fiducia.cspline), 15

F

fancyTrapz?2 () (in module fiducia.cspline), 17
fancyTrapz2Variance () (in module fiducia.error),
23

feelingLucky () (in module fiducia.main), 36
fiducia.cspline

module, 13
fiducia.error

module, 21

INDEX

fiducia.loader
module, 27
fiducia.main
module, 31
fiducia.misc
module, 39
fiducia.pltDefaults
module, 41
fiducia.rawProcess
module, 43
fiducia.response
module, 57
fiducia.stats
module, 59
fiducia.visualization
module, 65
find_nearest () (in module fiducia.misc), 39

G

getPeaks () (in module fiducia.rawProcess), 52
gradientVariance () (in module fiducia.stats), 60

F{

highestN () (in module fiducia.rawProcess), 52

highestPeak () (in module fiducia.rawProcess), 51

hysteresisCorrect () (in module fidu-
cia.rawProcess), 54

inferPower () (in module fiducia.main), 33
inferRadTemp () (in module fiducia.main), 32
interpVariance () (in module fiducia.stats), 62

K

knotFind () (in module fiducia.response), 57
knotSolve () (in module fiducia.cspline), 19
knotVarianceFind () (in module fiducia.error), 22

L

loadCorrected()
54
loadResponses () (in module fiducia.loader), 28

(in module fiducia.rawProcess),

71

fiducia Documentation, Release 0.2.0

loadResponseUncertainty ()
cia.loader), 28

(in module fidu-

M

module
fiducia.
fiducia.
fiducia.
fiducia.
fiducia

cspline, 13
error, 21

loader, 27

main, 31

.misc, 39
pltDefaults, 41
rawProcess, 43
response, 57
stats, 59
.visualization, 65

fiducia.
fiducia.
fiducia.
fiducia.
fiducia

N

noScope () (in module fiducia.rawProcess), 44
noXRD () (in module fiducia.rawProcess), 45

O

offsetCorrect () (in module fiducia.rawProcess),
47
onChannels () (in module fiducia.rawProcess), 45

F)

plot_line_shaded () (in module fidu-
cia.pltDefaults), 41
plot_scatter_bars() (in module fidu-

cia.pltDefaults), 42
plotResponse () (in module fiducia.visualization), 65
plotStreak () (in module fiducia.visualization), 66
plotTraces () (in module fiducia.visualization), 66
polyBkg () (in module fiducia.rawProcess), 49
polyBkgFrame () (in module fiducia.rawProcess), 51

R

readDanProcessed () (in module fiducia.loader), 28

readDanteData () (in module fiducia.loader), 30

reconstructSpectrum () (in module fidu-
cia.cspline), 20

responselnterp () (in module fiducia.cspline), 15

responselnterpVariance () (in module fidu-
cia.error), 23

S

segmentsArr () (in module fiducia.cspline), 18
signalEdges () (in module fiducia.rawProcess), 50
signallImg () (in module fiducia.visualization), 66
signallnt () (in module fiducia.loader), 29
signalsAtTime () (in module fiducia.loader), 29
simpsVariance () (in module fiducia.stats), 59
simulateSignal () (in module fiducia.main), 32

splineCoords () (in module fiducia.cspline), 14
splineCoordsInv () (in module fiducia.cspline), 14

T

timeAvgBkg () (in module fiducia.rawProcess), 48
timesScope () (in module fiducia.rawProcess), 45
trapzVariance () (in module fiducia.stats), 60

V

voltageScale () (in module fiducia.rawProcess), 46

Y

yChiCoeffArr () (in module fiducia.cspline), 16

yChiCoeffArrEnergies () (in module
cia.cspline), 17

yCoeffArr () (in module fiducia.cspline), 14

fidu-

72

Index

	Installing Fiducia
	Examples
	How to Contribute
	Acknowledging and Citing
	Fiducia License (BSD 3-clause)
	Cubic Spline Matrices (fiducia.cspline)
	Spline Uncertainty Propagation (fiducia.error)
	Data Loading Utilities (fiducia.loader)
	Fiducia Main File (fiducia.main)
	Miscellaneous Functions (fiducia.misc)
	Plot Defaults (fiducia.pltDefaults)
	Raw Dante Data Processing (fiducia.rawProcess)
	Dante Response Functions (fiducia.response)
	Uncertainty Propagation for Common Operations (fiducia.stats)
	Visualization Utilities (fiducia.visualization)
	Indices and tables
	Python Module Index
	Index

